219 research outputs found

    Throughput capacity of two-hop relay MANETs under finite buffers

    Full text link
    Since the seminal work of Grossglauser and Tse [1], the two-hop relay algorithm and its variants have been attractive for mobile ad hoc networks (MANETs) due to their simplicity and efficiency. However, most literature assumed an infinite buffer size for each node, which is obviously not applicable to a realistic MANET. In this paper, we focus on the exact throughput capacity study of two-hop relay MANETs under the practical finite relay buffer scenario. The arrival process and departure process of the relay queue are fully characterized, and an ergodic Markov chain-based framework is also provided. With this framework, we obtain the limiting distribution of the relay queue and derive the throughput capacity under any relay buffer size. Extensive simulation results are provided to validate our theoretical framework and explore the relationship among the throughput capacity, the relay buffer size and the number of nodes

    Gaussian-based Probabilistic Deep Supervision Network for Noise-Resistant QoS Prediction

    Full text link
    Quality of Service (QoS) prediction is an essential task in recommendation systems, where accurately predicting unknown QoS values can improve user satisfaction. However, existing QoS prediction techniques may perform poorly in the presence of noise data, such as fake location information or virtual gateways. In this paper, we propose the Probabilistic Deep Supervision Network (PDS-Net), a novel framework for QoS prediction that addresses this issue. PDS-Net utilizes a Gaussian-based probabilistic space to supervise intermediate layers and learns probability spaces for both known features and true labels. Moreover, PDS-Net employs a condition-based multitasking loss function to identify objects with noise data and applies supervision directly to deep features sampled from the probability space by optimizing the Kullback-Leibler distance between the probability space of these objects and the real-label probability space. Thus, PDS-Net effectively reduces errors resulting from the propagation of corrupted data, leading to more accurate QoS predictions. Experimental evaluations on two real-world QoS datasets demonstrate that the proposed PDS-Net outperforms state-of-the-art baselines, validating the effectiveness of our approach

    A diverse global fungal library for drug discovery

    Get PDF
    Background: Secondary fungal metabolites are important sources for new drugs against infectious diseases and cancers. Methods: To obtain a library with enough diversity, we collected about 2,395 soil samples and 2,324 plant samples from 36 regions in Africa, Asia, and North America. The collection areas covered various climate zones in the world. We examined the usability of the global fungal extract library (GFEL) against parasitic malaria transmission, Gram-positive and negative bacterial pathogens, and leukemia cells. Results: Nearly ten thousand fungal strains were isolated. Sequences of nuclear ribosomal internal transcribed spacer (ITS) from 40 randomly selected strains showed that over 80% were unique. Screening GFEL, we found that the fungal extract from was able to block transmission to , and the fungal extract from was able to kill myelogenous leukemia cell line K562. We also identified a set of candidate fungal extracts against bacterial pathogens
    corecore